Blood vessels deliver nutrients and oxygen to cells and tissues in the body. When blood supply is insufficient new vessels form to meet the metabolic tissue requirements. Several studies have examined the cellular and molecular principles of blood vessel formation, yet little is known about how vessels sense and integrate environmental signals originating from nutrient- and oxygen-deprived tissues to achieve functional vascular patterning. The NAD(+)-dependent deacetylase SIRT1 mediates adaptation to environmental stresses by adjusting cellular responses to the energetic state of the cell and recent studies highlight important functions of SIRT1 in regulating vascular growth, shape, and function. Here, we review the emerging role of SIRT1 as a metabolic sensor coupling energy and oxygen homeostasis to the growth and function of the vasculature.
Copyright 2010 Elsevier Ltd. All rights reserved.