The Multichannel Mars Organic Analyzer (McMOA), a portable instrument for the sensitive microchip capillary electrophoresis (CE) analysis of organic compounds such as amino acid biomarkers and polycyclic aromatic hydrocarbons (PAHs), is developed. The instrument uses a four-layer microchip, containing eight CE analysis systems integrated with a microfluidic network for autonomous fluidic processing. The McMOA has improved optical components that integrate 405 nm laser excitation with a linear-scanning optical system capable of multichannel real-time fluorescence spectroscopic analysis. The instrumental limit of detection is 6 pM (glycine). Microfluidic programs are executed to perform the automated sequential analysis of an amine-containing sample in each channel as well as eight consecutive analyses of alternating samples on the same channel, demonstrating less than 1% cross-contamination. The McMOA is used to identify the unique fluorescence spectra of nine components in a PAH standard and then applied to the analysis of a sediment sample from Lake Erie. The presence of benzo[a]pyrene and perylene in this sample is confirmed, and a peak coeluting with anthanthrene is disqualified based on spectral analysis. The McMOA exploits lab-on-a-chip technologies to fully integrate complex autonomous operations demonstrating the facile engineering of microchip-CE platforms for the analysis of a wide variety of organic compounds in planetary exploration.