Background: Severe sepsis results in a sustained deleterious immune dysregulation. Indoleamine 2,3-dioxygenase (IDO), the rate-limiting enzyme of tryptophan catabolism, plays a pivotal role in immune tolerance and is induced during various inflammatory conditions.
Methods: Plasma samples obtained from patients with septic shock (n = 38), severe sepsis (n = 35), or sepsis (n = 10) and from healthy donors (n = 26) were analyzed for IDO activity by high-performance liquid chromatography. Lymphocyte, monocyte, and regulatory T cell counts as well as monocytic human leukocyte antigen DR (HLA-DR) expression were quantified by flow cytometry. Peripheral blood mononuclear cells and purified CD14(+) and CD14(-) fractions were assayed in vitro for spontaneous and inducible IDO expression and activity.
Results: IDO activity gradually increased according to sepsis severity, and septic patients who died had higher IDO activity on admission than did survivors (P = .013). Monocytes were a major source of active IDO in normal peripheral blood. The percentage and absolute number of circulating CD14(+) cells were increased in septic patients, and their monocytes remained fully able to produce functional IDO after NF-kappaB-independent interferon gamma stimulation but not through NF-kappaB-dependent Toll-like receptor engagement.
Conclusions: IDO activity is increased during severe sepsis and septic shock and is associated with mortality. IDO production could be used to better characterize monocyte reprogramming in sepsis.