The conversion of normal cellular prion protein (PrP) into its pathological isoform, scrapie PrP, may occur at the cell surface or, more probably, in late endosomes. The early events leading to the structural conversion of PrP appear to be related to the presence of more or less stable soluble oligomers, which might mediate neurotoxicity. In the current study, we investigate the interaction of alpha-rich PrP monomers and beta-rich size-exclusion-chromatography-purified PrP oligomers with lipid membranes. We compare their structural properties when associated with lipid bilayers and study their propensities to permeabilize the membrane at physiological pH. We also study the influence of the N-terminal flexible region (residues 24-103) by comparing full-length PrP(24-234) and N-terminally truncated PrP(104-234) oligomers. We showed that both 12-subunit oligomers cause an immediate and large increase in the permeability of the membrane, whereas equivalent amounts of monomeric forms cause no detectable leakage. Although the two monomeric PrP constructs undergo an alpha-to-beta conformational change when bound to the negatively charged membrane, only the full-length form of monomeric PrP has a weak fusogenic effect. Finally, the oligomers affect the integrity of the membrane differently from the monomers, independently of the presence of the N-terminal flexible domain. As for other forms of amyloidogenesis, a reasonable mechanism for the toxicity arising from PrP fibrillization must be associated with low-molecular-weight oligomeric intermediates, rather than with mature fibrils. Knowledge of the mechanism of action of these soluble oligomers would have a high impact on the development of novel therapeutic targets.
(c) 2010 Elsevier Ltd. All rights reserved.