Aurora-A, a conserved serine-threonine kinase, plays essential roles in mitosis. Aberrant upregulation of Aurora-A perturbs proper mitotic progression and results in a generation of multinucleated cells with centrosome amplification. The molecular mechanisms for these mitotic defects remain elusive. Here, we show that the overexpressed Aurora-A-induced mitotic defects depend on the telomeric protein TRF1. Live and fixed cell analyses revealed that Aurora-A overexpression in HeLa cells compromises chromosome biorientation, which leads to cytokinetic failure and tetraploidization with increased centrosome numbers. TRF1 depletion by small interfering RNAs or by tankyrase-1 overexpression suppresses Aurora-A-induced occurrence of unaligned chromosomes in metaphase, thus preventing the subsequent abnormalities. We found that Aurora-A binds and phosphorylates TRF1. When TRF1 knockdown cells are complemented with wild-type TRF1, Aurora-A-induced mitotic defects recur. By contrast, a TRF1 mutant that is not phosphorylatable by Aurora-A does not restore such Aurora-A-induced phenotype. We propose that TRF1 phosphorylation by excessive Aurora-A may provoke abnormal mitosis and chromosomal instability.