F-box proteins are the substrate recognition subunits of SCF (Skp1, Cul1, F-box protein) ubiquitin ligase complexes. Skp2 is a nuclear F-box protein that targets the CDK inhibitor p27 for ubiquitin- and proteasome-dependent degradation. In G(0) and during the G(1) phase of the cell cycle, Skp2 is degraded via the APC/C(Cdh1) ubiquitin ligase to allow stabilization of p27 and inhibition of CDKs, facilitating the maintenance of the G(0)/G(1) state. APC/C(Cdh1) binds Skp2 through an N-terminal domain (amino acids 46-94 in human Skp2). It has been shown that phosphorylation of Ser64 and Ser72 in this domain dissociates Skp2 from APC/C. More recently, it has instead been proposed that phosphorylation of Skp2 on Ser72 by Akt/PKB allows Skp2 binding to Skp1, promoting the assembly of an active SCF(Skp2) ubiquitin ligase, and Skp2 relocalization/retention into the cytoplasm, promoting cell migration via an unknown mechanism. According to these reports, a Skp2 mutant in which Ser72 is substituted with Ala is unable to promote cell proliferation and loses its oncogenic potential. Given the contrasting reports, we revisited these results and conclude that phosphorylation of Skp2 on Ser72 does not control Skp2 binding to Skp1 and Cul1, has no influence on SCF(Skp2) ubiquitin ligase activity, and does not affect the subcellular localization of Skp2.