Heavy metal accumulation in lake sediments, fish (Oreochromis niloticus and Serranochromis thumbergi), and crayfish (Cherax quadricarinatus) in Lake Itezhi-tezhi and Lake Kariba, Zambia

Arch Environ Contam Toxicol. 2010 Aug;59(2):291-300. doi: 10.1007/s00244-010-9483-8. Epub 2010 Feb 17.

Abstract

We measured the level of heavy metal accumulation in lake sediments, herbivorous (Oreochromis niloticus) and carnivorous (Serranochromis thumbergi) fish, and crayfish (Cherax quadricarinatus) from Lake Itezhi-tezhi (ITT) and Lake Kariba. We used atomic absorption spectrophotometry to quantify the levels of seven heavy metals (Cr, Co, Cu, Zn, Cd, Pb, and Ni). The sediment and the herbivorous fish O. niloticus accumulated a very high concentration of Cu in Lake ITT, most likely due to the discharge of Cu waste from a mining area 450 km upstream. The aquatic species we sampled in Lake Kariba had higher concentrations of Cr, Ni, and Pb relative to those in Lake ITT. This is most likely due to anthropogenic activities, such as the use of leaded petrol and antifouling agents in marine paints. Interestingly, we observed a negative correlation between the coefficient of condition (K) and Ni concentration in the crayfish hepatopancreas. Both O. niloticus and the crayfish had much higher biota-sediment accumulation factors (BSAF) for Cu, Zn, and Cd relative to Cr, Co, Pb, and Ni. The rank of BSAF values for O. niloticus (Cu>Cd>Zn) and C. quadricarinatus (Zn>Cd>Cu) differed from the expected ranks based on the general order of affinity of metals (Cd>>Zn>Cu).

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Astacoidea / metabolism*
  • Cichlids / metabolism*
  • Environmental Monitoring*
  • Fresh Water / chemistry
  • Geologic Sediments / chemistry*
  • Hepatopancreas / metabolism
  • Liver / metabolism
  • Metals, Heavy
  • Muscles / metabolism
  • Water Pollutants, Chemical / analysis*
  • Zambia

Substances

  • Metals, Heavy
  • Water Pollutants, Chemical