Human cardiac troponin I: a Langmuir monolayer study

Langmuir. 2010 Mar 2;26(5):3268-74. doi: 10.1021/la903033x.

Abstract

Human cardiac troponin I (cTnI) is the preferred biomarker in the assessment of myocardial infarction. It is known to interact with troponin C and T to form a trimeric complex. Whereas small amounts are found in the cytoplasm, most of cTnI is in the form of a complex with actin located in myofilaments. To understand these interactions of cTnI better, we first investigated the surface chemistry of cTnI as a Langmuir monolayer spread at the air-water interface. We investigated the optimal conditions for obtaining a stable Langmuir monolayer in terms of changing the ionic strength of the subphase using different concentrations of potassium chloride. Monolayer stability was investigated by compressing the cTnI monolayer to a specific surface pressure and keeping the surface pressure constant while measuring the decrease in the molecular area as a function of time. Aggregation and/or domain formation was investigated by using compression-decompression cycles, in situ UV-vis spectroscopy, Brewster angle microscopy (BAM), and epifluorescence microscopy. To ensure that the secondary structure is maintained, we used infrared reflection-absorption spectroscopy (IRRAS) directly at the air-subphase interface. It was found that cTnI forms a very stable monolayer (after more that 5000 s) that does not aggregate at the air-subphase interface. The cTnI molecules maintain their secondary structure and, on the basis of the low reflectivity observed using BAM measurements and the low reflection-absorption intensities measured with IRRAS spectroscopy, lie flat on the subphase with the alpha-helices parallel to the air-subphase interface.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Absorption
  • Air
  • Binding, Competitive
  • Biosensing Techniques
  • Humans
  • Microscopy
  • Myocardium*
  • Pressure
  • Protein Stability
  • Spectrophotometry, Infrared
  • Surface Properties
  • Troponin I / chemistry*
  • Troponin I / metabolism
  • Water / chemistry

Substances

  • Troponin I
  • Water