Thirteen human colorectal cancer (CRC) cell lines were established from 10 primary tumors and 3 metastatic tumors obtained from 13 Korean patients. Characteristics of the cell lines including morphology in vivo and in vitro; mutations of the K-ras, p53, APC and MMR genes and microsatellite instability (MSI) status in vitro were determined. Expression of drug-sensitivity genes including MDR1, MXR, MRP1 and COX2 was also analyzed. The cell lines were unique as judged by DNA fingerprinting using 16 short tandem repeats. Eleven of the cell lines grew as adherent populations and the remaining two as floating aggregates. None of the cell lines were contaminated with Mycoplasma or bacteria. All cell lines showed high viability with relatively long doubling times. Six cell lines contained mutations at K-ras. Seven cell lines displayed p53 gene missense, nonsense and frameshift mutations. MSI was found in three cell lines and two cell lines with an MSI-high phenotype-possessed hMLH1 mutations. Nine cell lines had an APC mutation. MRP1 was highly expressed in all cell lines, and high expression of MDR1, MXR and COX2 evident in eight, six and six cell lines, respectively. Embryonal stem cell markers (MELK, SOX4 and OCT4) were expressed in most of cell lines. The cancer stem cell biomarkers CD133, CD44 and Lgr5 were expressed in 12, 13 and 13 cell lines, respectively. The presently well-characterized CRC cell lines should be useful in investigations of the biological characteristics of CRC, particularly for investigations related to gene alterations associated with CRC and biology of cancer stem cells.