Measurement of human surfactant protein-B turnover in vivo from tracheal aspirates using targeted proteomics

Anal Chem. 2010 Mar 15;82(6):2561-7. doi: 10.1021/ac1001433.

Abstract

We describe a method to measure protein synthesis and catabolism in humans without prior purification and use the method to measure the turnover of surfactant protein-B (SP-B). SP-B, a lung-specific, hydrophobic protein essential for fetal-neonatal respiratory transition, is present in only picomolar quantities in tracheal aspirate samples and difficult to isolate for dynamic turnover studies using traditional in vivo tracer techniques. Using infusion of [5,5,5-(2)H(3)] leucine and a targeted proteomics method, we measured both the quantity and kinetics of SP-B tryptic peptides in tracheal aspirate samples of symptomatic newborn infants. The fractional synthetic rate (FSR) of SP-B measured using the most abundant proteolytic fragment, a 10 amino acid peptide from the carboxy-terminus of proSP-B (SPTGEWLPR), from the circulating leucine pool was 0.035 +/- 0.005 h(-1), and the fractional catabolic rate was 0.044 +/- 0.003 h(-1). This technique permits high-throughput and sensitive measurement of turnover of low abundance proteins with minimal sample preparation.

Publication types

  • Evaluation Study
  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Amino Acid Sequence
  • Chromatography, Liquid / methods
  • Humans
  • Infant, Newborn
  • Molecular Sequence Data
  • Proteomics / economics
  • Proteomics / methods*
  • Pulmonary Surfactant-Associated Protein B / analysis*
  • Sensitivity and Specificity
  • Tandem Mass Spectrometry / methods
  • Trachea / chemistry*

Substances

  • Pulmonary Surfactant-Associated Protein B