Induced pluripotent stem (iPS) cells, which are a type of pluripotent stem cell generated from reprogrammed somatic cells, are expected to have potential for patient-oriented disease investigation, drug screening, toxicity tests, and transplantation therapies. Here, we demonstrated that murine iPS cells have the potential to develop in vitro into skeletal muscle stem/progenitor cells, which are almost equivalent to murine embryonic stem cells. Cells with strong in vitro myogenic potential effectively were enriched by fluorescence-activated cell sorting using the anti-satellite cell antibody SM/C-2.6. Furthermore, on transplantation into mdx mice, SM/C-2.6(+) cells exerted sustained myogenic lineage differentiation in injured muscles, while providing long-lived muscle stem cell support. Our data suggest that iPS cells have the potential to be used in clinical treatment of muscular dystrophies.