In this work, injectable, biodegradable hydrogel composites of crosslinked oligo(poly(ethylene glycol) fumarate) and gelatin microparticles (MPs) were used to fabricate a bilayered osteochondral construct. Rabbit marrow mesenchymal stem cells (MSCs) were encapsulated with transforming growth factor-beta3 (TGF-beta3)-loaded MPs in the chondrogenic layer and cocultured with cells of different periods of osteogenic preculture (0, 3, 6 and 12 days) in the osteogenic layer to investigate the effects of TGF-beta3 delivery and coculture on the proliferation and differentiation of cells in both layers. The results showed that, in the chondrogenic layer, TGF-beta3 significantly stimulated chondrogenic differentiation of MSCs. In addition, cells of various osteogenic preculture periods in the osteogenic layer, along with TGF-beta3, enhanced gene expression for MSC chondrogenic markers to different extents. In the osteogenic layer, cells maintained their alkaline phosphatase activity during the coculture; however, mineralization was delayed by the presence of TGF-beta3. Overall, this study demonstrated the fabrication of bilayered hydrogel composites which mimic the structure and function of osteochondral tissue, along with the application of these composites as cell and growth factor carriers, while illustrating that encapsulated cells of different degrees of osteogenic differentiation can significantly influence the chondrogenic differentiation of cocultured progenitor cells in both the presence and absence of chondrogenic growth factors.
Copyright 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.