The Ewing Sarcoma (EWS) family of tumors is one of the most common tumors diagnosed in children and adolescents and is characterized by a translocation involving the EWS gene. Despite advances in chemotherapy, the prognosis of metastatic EWS is poor with an overall survival of <30% after 5 years. EWS tumor cells express the receptor tyrosine kinases, platelet-derived growth factor receptor (PDGFR) and c-KIT. ABT-869 is a multitargeted small-molecule inhibitor that targets Fms-like tyrosine kinase-3, c-KIT, vascular endothelial growth receptors, and PDGFRs. To determine the potential therapeutic benefit of ABT-869 in EWS cells, we examined the effects of ABT-869 on EWS cell lines and xenograft mouse models. ABT-869 inhibited the proliferation of two EWS cell lines, A4573 and TC71, at an IC(50) of 1.25 and 2 mumol/L after 72 h of treatment, respectively. The phosphorylation of PDGFRbeta, c-KIT, and extracellular signal-regulated kinases was also inhibited. To examine the effects of ABT-869 in vivo, the drug was given to mice injected with EWS cells. We observed inhibition of growth of EWS tumor cells in a xenograft mouse model and prolonged survival in a metastatic mouse model of EWS. Therefore, our in vitro and in vivo studies show that ABT-869 inhibits proliferation of EWS cells through inhibition of PDGFRbeta and c-KIT pathways.