Styrax benzoin trees, native to the island Sumatra, Indonesia are wounded to produce resin that is collected and burned as incense. These wounds on trees commonly develop into expanding cankers that lead to tree death. The aim of this study was to consider whether Ophiostomatoid fungi, typically associated with wounds on trees might be associated with resin harvesting on S. benzoin. Samples were collected from the edges of artificially induced wounds, and particularly where cankers and staining of the vascular tissue was evident. Tissue samples were incubated in moist chambers and carrot baiting was also used to detect the presence of Ceratocystis spp. Fruiting structures with morphology typical of species in the C. fimbriata s.l. species complex and species in the anamorph genus Thielaviopsis were found, on both the incubated wood and the carrot baits. DNA sequences were generated for the Internal Transcribed Spacer regions 1 and 2 including the 5.8S rRNA gene, part of the beta-tubulin and the Transcription Elongation Factor 1-alpha gene regions. These data were compared with those of other species in the C. fimbriata s.l. species complex and Thielaviopsis using phylogenetic analysis. Morphology of the isolates in culture as well as phylogenetic inference showed that the Thielaviopsis sp. present on the wounds was T. basicola. The Ceratocystis sp. from S. benzoin represents a new taxon in the C. fimbriata s.l. complex described here as C. larium sp. nov.
Keywords: Ophiostomatoid fungi; phylogenetic inference; vascular staining.