High resolution electroencephalography (HR-EEG) combined with source localization methods has mainly been used to study interictal spikes and there have been few studies comparing source localization of scalp ictal patterns with depth EEG. To address this issue, 10 patients with four different scalp ictal patterns (ictal spikes, rhythmic activity, paroxysmal fast activity, obscured) were investigated by both HR-EEG and stereoelectroencephalography (SEEG). Sixty-four scalp-EEG sensors and a sampling rate of 1kHz were used to record scalp ictal patterns. Five different source models (moving dipole, rotating dipole, MUSIC, LORETA, and sLORETA) were used in order to perform source localization. Seven to 10 intracerebral electrodes were implanted during SEEG investigations. For each source model, the concordance between ictal source localization and epileptogenic zone defined by SEEG was assessed. Results were considered to agree if they localized in the same sublobar area as defined by a trained epileptologist. Across the study population, the best concordance between source localization methods and SEEG (9/10) was obtained with equivalent current dipole modeling. MUSIC and LORETA had a concordance of 7/10 whereas sLORETA had a concordance of only 5/10. Four of our patients classified into different groups (ictal spikes, paroxysmal fast activity, obscured) had complete concordance between source localization methods and SEEG. A high signal to noise ratio, a short time window of analysis (<1s) and bandpass filtering around the frequency of rhythmic activity allowed improvement of the source localization results. A high level of agreement between source localization methods and SEEG can be obtained for ictal spike patterns and for scalp-EEG paroxysmal fact activities whereas scalp rhythmic discharges can be accurately localized but originated from seizure propagation network.
Copyright 2010 Elsevier Inc. All rights reserved.