A postincision-deficient TFIIH causes replication fork breakage and uncovers alternative Rad51- or Pol32-mediated restart mechanisms

Mol Cell. 2010 Mar 12;37(5):690-701. doi: 10.1016/j.molcel.2010.02.008.

Abstract

Homologous recombination is a major double-strand break (DSB) repair mechanism that acts during the S and G2 phases. In contrast, nucleotide excision repair (NER) is a major pathway for the repair of DNA bulky adducts that is unrelated to replication. We show that replication can be strongly disturbed in a specific type of rad3/XPD NER mutant of TFIIH, causing replication fork breakage. In contrast to classical NER-deficient mutations, the S. cerevisiae rad3-102 allele, which has a minimal impact on UV resistance, channels bulky adducts into DSBs. rad3-102 allows Rad1/XPF- and Rad2/XPG-catalyzed DNA incisions but fails to perform postincision steps retaining TFIIH at the damaged site. Broken forks are rescued by MRX-Rad52-Rfc1-dependent recombination via two types of replication restart mechanisms, one being Rad51 dependent and the other Pol32 dependent. Our results define the genetic and molecular hallmarks of replication fork breakage and restart and bring insights to understand specific NER-related human syndromes.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • DNA Breaks, Double-Stranded*
  • DNA Helicases / genetics
  • DNA Helicases / metabolism
  • DNA Repair Enzymes / genetics
  • DNA Repair Enzymes / metabolism
  • DNA Repair* / radiation effects
  • DNA Replication* / radiation effects
  • DNA, Fungal / biosynthesis*
  • DNA, Fungal / radiation effects
  • DNA-Binding Proteins / genetics
  • DNA-Binding Proteins / metabolism
  • DNA-Directed DNA Polymerase / genetics
  • DNA-Directed DNA Polymerase / metabolism*
  • Dose-Response Relationship, Radiation
  • Endodeoxyribonucleases / genetics
  • Endodeoxyribonucleases / metabolism
  • Endonucleases / genetics
  • Endonucleases / metabolism
  • Genomic Instability
  • Genotype
  • Humans
  • Mutation
  • Phenotype
  • Rad51 Recombinase / genetics
  • Rad51 Recombinase / metabolism*
  • Rad52 DNA Repair and Recombination Protein / genetics
  • Rad52 DNA Repair and Recombination Protein / metabolism
  • Radiation Tolerance
  • Recombination, Genetic* / radiation effects
  • Replication Protein C / genetics
  • Replication Protein C / metabolism
  • Saccharomyces cerevisiae / genetics*
  • Saccharomyces cerevisiae / growth & development
  • Saccharomyces cerevisiae / metabolism
  • Saccharomyces cerevisiae / radiation effects
  • Saccharomyces cerevisiae Proteins / genetics
  • Saccharomyces cerevisiae Proteins / metabolism*
  • Time Factors
  • Transcription Factor TFIIH / genetics
  • Transcription Factor TFIIH / metabolism*
  • Ultraviolet Rays

Substances

  • DNA, Fungal
  • DNA-Binding Proteins
  • Pol32 protein, S cerevisiae
  • RAD52 protein, S cerevisiae
  • RFC1 protein, S cerevisiae
  • Rad52 DNA Repair and Recombination Protein
  • Saccharomyces cerevisiae Proteins
  • RAD2 protein, S cerevisiae
  • Transcription Factor TFIIH
  • RAD51 protein, S cerevisiae
  • Rad51 Recombinase
  • DNA-Directed DNA Polymerase
  • Endodeoxyribonucleases
  • Endonucleases
  • RAD1 protein, S cerevisiae
  • Rad3 protein, S cerevisiae
  • DNA Helicases
  • Replication Protein C
  • DNA Repair Enzymes