A panel of seven SR1 tobacco mutants (ATER1 to ATER7) derived via T-DNA activation tagging and screening for resistance to a microtubule assembly inhibitor, ethyl phenyl carbamate, were used to study the role of microtubules during infection and spread of tobacco mosaic virus (TMV). In one of these lines, ATER2, alpha-tubulin is shifted from the tyrosinylated into the detyrosinated form, and the microtubule plus-end marker GFP-EB1 moves significantly slower when expressed in the background of the ATER2 mutant as compared with the SR1 wild type. The efficiency of cell-to-cell movement of TMV encoding GFP-tagged movement protein (MP-GFP) is reduced in ATER2 accompanied by a reduced association of MP-GFP with plasmodesmata. This mutant is also more tolerant to viral infection as compared with the SR1 wild type, implying that reduced microtubule dynamics confer a comparative advantage in face of TMV infection.