Bacteriophage T4 gene 17 amplification mutants (Hp17) selected by growth of gene 17 amber mutants on ochre suppressor strains of Escherichia coli carry two to more than sixfold tandem head-to-tail repeats of the gene 17-18 region (Wu & Black, 1987). We characterized the structures of Hp17 isolates by restriction enzyme mapping and Southern blot analysis. The left and right boundaries of the amplified sequences were mapped within genes 16 and gene 18 or 19, respectively. The TaqI-restriction fragments containing the novel junctions arising from fusion of the amplified gene were then cloned and sequenced. Three Hp17 mutants arose from rearrangement in one five base-pair (bp) block within a G + C-rich region of partial homology (24 bp with 4 mismatches) between genes 16 and 19. Moreover, an oligonucleotide probe showed that 190/191 mutants isolated had recombined within the 5 bp block, and other rearrangements within this 24 bp region were not detected. Only one anomalous Hp mutant rearranged elsewhere between genes 16 and 18 in a 14 bp homology region with one mismatch. Elimination of gene alt of phage T4 is required for isolation of Hp17 mutants, apparently because more DNA can be packaged into alt- heads. Requirements for the dispensable replication and recombination genes of T4 were probed; T4 topoisomerase (39, 52, 60), primase (58/61), and uvsX are required, whereas the host recA gene and T4 denV gene do not appear to be required for isolation of the Hp17 mutants. The evidence suggests an initiating sequence-specific rearrangement leads to the T4 Hp17 amplification mutants.