Information on genetic diversity of picoeukaryotes (<2-3 microm) comes mainly from traditional gene cloning and sequencing, but this method suffers from cloning biases and limited throughput. In this study, we explored the feasibility of using the cloning-independent and massively parallel 454 pyrosequencing technology to study the composition and genetic diversity of picoeukaryotes in the coastal waters of the subtropical western Pacific using the hypervariable V4 region of the 18S rRNA gene. Picoeukaryote assemblages between two sites with different hydrography and trophic status were also compared. The approach gave a high coverage of the community at genetic difference > or =5% but still underestimated the total diversity at a genetic difference < or =2%. Diversity of picoeukaryotes was higher in an oligomesotrophic bay than in a eutrophic bay. Stramenopiles, dinoflagellates, ciliates and prasinophytes were the dominant groups comprising approximately 27, 19, 11 and 11%, respectively, of the picoeukaryotes. Water samples collected from the two bays contained different high-level taxonomic groups and phylotype operational taxonomic units of picoeukaryotes. Our study represents one of the first and most comprehensive examinations of marine picoeukaryotic diversity using the 454 sequencing-by-synthesis technology.