Pseudomonas aeruginosa minor pilins are incorporated into type IV pili

J Mol Biol. 2010 May 7;398(3):444-61. doi: 10.1016/j.jmb.2010.03.028. Epub 2010 Mar 23.

Abstract

Type IV pili are long filamentous appendages required for both adhesion and a unique form of motility known as twitching. Twitching motility involves the extension and retraction of the pilus and requires a number of gene products, including five conserved pilin-like proteins of unknown function (FimU, PilV, PilW, PilX, and PilE in Pseudomonas aeruginosa), termed 'minor' pilins. Maintenance of a specific stoichiometric ratio among the minor pilins was important for function, as loss or overexpression of any component impaired motility. Disruption of individual minor pilin genes, or of the AlgR positive regulator of minor pilin operon expression in a strain where pilus retraction was blocked by inactivation of the PilT retraction ATPase, revealed that pili were produced, although levels of piliation were reduced relative to pilT positive control. Differences in the levels of piliation of complemented strains pointed to specific roles for each protein in the assembly process, with FimU and PilX being implicated as key promoters of pilus assembly on the cell surface. Using specific antibodies for each protein, we showed that the minor pilins FimU, PilV, PilW, PilX, and PilE were processed by the pre-pilin peptidase PilD and incorporated throughout the growing pilus filament. This is the first study to demonstrate that the minor pilins, conserved among bacteria expressing type IVa pili, are incorporated into the fiber and support a role for them in the initiation, but not termination, of pilus assembly.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Bacterial Proteins / metabolism*
  • Fimbriae Proteins / genetics
  • Fimbriae Proteins / metabolism*
  • Fimbriae, Bacterial / genetics
  • Fimbriae, Bacterial / metabolism*
  • Fimbriae, Bacterial / ultrastructure
  • Gene Deletion
  • Genetic Complementation Test
  • Locomotion
  • Macromolecular Substances
  • Microscopy, Electron, Transmission
  • Microscopy, Immunoelectron
  • Protein Binding
  • Protein Processing, Post-Translational
  • Pseudomonas aeruginosa / genetics
  • Pseudomonas aeruginosa / physiology*

Substances

  • Bacterial Proteins
  • Macromolecular Substances
  • Fimbriae Proteins