Purpose: To determine whether palmitic acid methyl ester (PAME) or methyl palmitate is the retina-derived relaxing factor (RRF).
Methods: A superfusion bioassay cascade technique was used with rat isolated retina as donor tissue and rat aortic ring as detector tissue. The superfusate was analyzed with gas chromatography/mass spectrometry (GC/MS). The biochemical and pharmacologic characteristics of RRF and PAME were compared.
Results: The authors demonstrated that the retina on superfusion with Krebs solution spontaneously released RRF (indicated by aortic ring relaxation) and PAME (measured by GC/MS). The release of RRF and PAME was calcium dependent because the release was abolished when the retinas were superfused with calcium-free Krebs solution. Furthermore, aortic relaxations induced by RRF and PAME were not affected after heating their solutions at 70 degrees C for 1 hour, suggesting that both are heat stable. Exogenous PAME concentration dependently induced aortic relaxation with EC50 of 0.82+/-0.75 pM. The aortic relaxations induced by RRF and exogenous PAME were inhibited by 4-aminopyridine (2 mM) and tetraethylammonium (TEA, 10 mM) but were not affected by TEA at 1 mM or 3 mM, glibenclamide (3 microM), or iberiotoxin (100 nM). The vasodilator activity of Krebs solution containing RRF or exogenous PAME was greatly attenuated after hexane extraction.
Conclusions: RRF and PAME share similar biochemical properties and react similarly to all pharmacologic inhibitors examined. Both act primarily on the voltage-dependent K+ (Kv) channel of aortic smooth muscle cells, causing aortic relaxation. These results suggest that PAME is the hydrophobic RRF.