Complexity of retinal cone bipolar cells

Prog Retin Eye Res. 2010 Jul;29(4):272-83. doi: 10.1016/j.preteyeres.2010.03.005. Epub 2010 Mar 31.

Abstract

An open issue of retinal organization and function is the comprehension of the different tasks specifically performed by bipolar cells, the neurons that collect information from photoreceptors in the outer retina and convey the signal to the inner plexiform layer. Particularly interesting is to understand the unique contribution to the visual signal brought by cone bipolar cells, neurons typical of the mammalian retina and especially dedicated to receive synaptic input from cones. In all the species studied so far, it has been shown that cone bipolar cells occur in about ten different types, which form distinct clusters identified with a panel of both classical and modern genetic methods. Reviewed here is current literature illustrating the occurrence of morphological, molecular and architectural features that confer to each bipolar cell type exclusive fingerprints, ultimately predicting the emergence of similarly unique, albeit still partially unraveled, functional properties. Thus, differences among cone bipolar cells lay the ground for the genesis in the outer retina of parallel channels, which convey to the inner retina separate information, among others, about contrast, chromatic features and temporal properties of the visual signal.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Humans
  • Ion Channels / physiology
  • Models, Neurological
  • Receptors, Glutamate / metabolism
  • Retina / cytology*
  • Retina / physiology
  • Retinal Bipolar Cells / physiology*
  • Retinal Cone Photoreceptor Cells / physiology*
  • Vision, Ocular / physiology*
  • Visual Pathways / physiology

Substances

  • Ion Channels
  • Receptors, Glutamate