Background & aims: Polycomb group proteins initiate and maintain gene silencing through chromatin modifications and contribute to the maintenance of self-renewal in a variety of stem cells. Among polycomb repressive complexes (PRCs), PRC2 initiates gene silencing by methylating histone H3 lysine 27, and PRC1 maintains gene silencing through mono-ubiquitination of histone H2A lysine 119. We have previously shown that Bmi1, a core component of PRC1, tightly regulates the self-renewal of hepatic stem/progenitor cells.
Methods: In this study, we conducted lentivirus-mediated knockdown of Ezh2 to characterise the function of Ezh2, a major component of PRC2, in hepatic stem/progenitor cells.
Results: Loss of Ezh2 function in embryonic murine hepatic stem/progenitor cells severely impaired proliferation and self-renewal capability. This effect was more prominent than that of Bmi1-knockdown and was partially abrogated by the deletion of both Ink4a and Arf, major targets of PRC1 and PRC2. Importantly, Ezh2-knockdown but not Bmi1-knockdown promoted the differentiation and terminal maturation of hepatocytes, followed by the up-regulation of several transcriptional regulators of hepatocyte differentiation.
Conclusions: Our findings indicate that Ezh2 plays an essential role in the maintenance of both the proliferative and self-renewal capacity of hepatic stem/progenitor cells and the full execution of their differentiation.
Copyright 2010 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.