Molecular basis for SH3 domain regulation of F-BAR-mediated membrane deformation

Proc Natl Acad Sci U S A. 2010 May 4;107(18):8213-8. doi: 10.1073/pnas.1003478107. Epub 2010 Apr 19.

Abstract

Members of the Bin/amphiphysin/Rvs (BAR) domain protein superfamily are involved in membrane remodeling in various cellular pathways ranging from endocytic vesicle and T-tubule formation to cell migration and neuromorphogenesis. Membrane curvature induction and stabilization are encoded within the BAR or Fer-CIP4 homology-BAR (F-BAR) domains, alpha-helical coiled coils that dimerize into membrane-binding modules. BAR/F-BAR domain proteins often contain an SH3 domain, which recruits binding partners such as the oligomeric membrane-fissioning GTPase dynamin. How precisely BAR/F-BAR domain-mediated membrane deformation is regulated at the cellular level is unknown. Here we present the crystal structures of full-length syndapin 1 and its F-BAR domain. Our data show that syndapin 1 F-BAR-mediated membrane deformation is subject to autoinhibition by its SH3 domain. Release from the clamped conformation is driven by association of syndapin 1 SH3 with the proline-rich domain of dynamin 1, thereby unlocking its potent membrane-bending activity. We hypothesize that this mechanism might be commonly used to regulate BAR/F-BAR domain-induced membrane deformation and to potentially couple this process to dynamin-mediated fission. Our data thus suggest a structure-based model for SH3-mediated regulation of BAR/F-BAR domain function.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Amino Acid Sequence
  • Animals
  • COS Cells
  • Carrier Proteins / chemistry*
  • Carrier Proteins / ultrastructure
  • Cell Membrane / chemistry*
  • Cell Membrane / ultrastructure
  • Chlorocebus aethiops
  • Crystallography, X-Ray
  • Microscopy, Electron
  • Molecular Sequence Data
  • Protein Structure, Tertiary
  • src Homology Domains*

Substances

  • Carrier Proteins

Associated data

  • PDB/2X3V
  • PDB/2X3W
  • PDB/2X3X