Purpose: Novel therapeutic approaches for complex karyotype soft tissue sarcoma (STS) are crucially needed. Consequently, we assessed the efficacy of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), in combination with chemotherapy, on local and metastatic growth of human STS xenografts in vivo.
Experimental design: TRAIL was evaluated alone and combined with low-dose doxorubicin in two human STS severe combined immunodeficient mouse xenograft models using fibrosarcoma (HT1080; wild-type p53) and leiomyosarcoma (SKLMS1; mutated p53), testing for effects on local growth, metastasis, and overall survival. Magnetic resonance imaging was used to evaluate local growth and bioluminescence was used to longitudinally assess lung metastases. Tissues were evaluated through immunohistocemistry and terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling staining for treatment effects on tumor cell proliferation, apoptosis, angiogenesis, angiogenic factors, and TRAIL receptor expression. Quantitative real-time polymerase chain reaction (QRTPCR) angiogenesis array was used to assess therapy-induced gene expression changes.
Results: TRAIL/doxorubicin combination induced marked STS local and metastatic growth inhibition in a p53-independent manner. Significantly increased (P < 0.001) host survival was also demonstrable. Combined therapy induced significant apoptosis, decreased tumor cell proliferation, and increased TRAIL receptor (DR4 and DR5) expression in all treated tumors. Moreover, decreased microvessel density was observed, possibly secondary to increased expression of the antiangiogenic factor CXCL10 and decreased proangiogenic interleukin-8 cytokine in response to TRAIL/doxorubicin combination, as was also observed in vitro.
Conclusions: Given the urgent need for better systemic approaches to STS, clinical trials evaluating TRAIL in combination with low-dose chemotherapy are potentially warranted.
Copyright 2010 AACR.