Microfluidics for cell separation

Med Biol Eng Comput. 2010 Oct;48(10):999-1014. doi: 10.1007/s11517-010-0611-4. Epub 2010 Apr 23.

Abstract

The need for efficient cell separation, an essential preparatory step in many biological and medical assays, has led to the recent development of numerous microscale separation techniques. This review describes the current state-of-the-art in microfluidics-based cell separation techniques. Microfluidics-based sorting offers numerous advantages, including reducing sample volumes, faster sample processing, high sensitivity and spatial resolution, low device cost, and increased portability. The techniques presented are broadly classified as being active or passive depending on the operating principles. The various separation principles are explained in detail along with popular examples demonstrating their application toward cell separation. Common separation metrics, including separation markers, resolution, efficiency, and throughput, of these techniques are discussed. Developing efficient microscale separation methods that offering greater control over cell population distribution will be important in realizing true point-of-care (POC) lab-on-a-chip (LOC) systems.

Publication types

  • Review

MeSH terms

  • Animals
  • Cell Separation / methods*
  • Flow Cytometry / methods
  • Humans
  • Immunomagnetic Separation / methods
  • Microfluidics / methods*