Secreted phospholipases A2 (sPLA2s) are present in atherosclerotic plaques and are now considered novel attractive therapeutic targets and potential biomarkers as they contribute to the development of atherosclerosis through lipoprotein-dependent and independent mechanisms. We have previously shown that hGX-sPLA2-phospholipolyzed LDL (LDL-X) induces proinflammatory responses in human umbilical endothelial cells (HUVECs); here we explore the molecular mechanisms involved. Global transcriptional gene expression profiling of the response of endothelial cells exposed to either LDL or LDL-X revealed that LDL-X activates multiple distinct cellular pathways including the unfolded protein response (UPR). Mechanistic insight showed that LDL-X activates UPR through calcium depletion of intracellular stores, which in turn disturbs cytoskeleton organization. Treatment of HUVECs and aortic endothelial cells (HAECs) with LDL-X led to activation of all 3 proximal initiators of UPR: eIF-2alpha, IRE1alpha, and ATF6. In parallel, we observed a sustained phosphorylation of the p38 pathway resulting in the phosphorylation of AP-1 downstream targets. This was accompanied by significant production of the proinflammatory cytokines IL-6 and IL-8. Our study demonstrates that phospholipolyzed LDL uses a range of molecular pathways including UPR to initiate endothelial cell perturbation and thus provides an LDL oxidation-independent mechanism for the initiation of vascular inflammation in atherosclerosis.