Fabrication of a 60-nm-diameter perfectly round metal-dot array over a large area on a plastic substrate using nanoimprint lithography and self-perfection by liquefaction

Small. 2010 Jun 6;6(11):1242-7. doi: 10.1002/smll.201000104.

Abstract

Typically, nanopatterning on plastic substrates has poor fidelity, poor adhesion, and low yield. Here the proposal of and the first experiment using a new fabrication method that overcomes the above obstacles and has achieved arrays of 60-nm-diameter, perfectly round metal dots over a large area on a polyethylene terephthalate (PET) substrate with high fidelity and high yield is reported. This new method is based on the use of a thin hydrogen silsesquioxane (HSQ) layer on top of PET, nanoimprint lithography, and self-perfection by liquefaction (SPEL). The HSQ layer offers excellent thermal protection to the PET substrate during SPEL, as well as good surface adhesion and etching resistance. Nanoimprinting plus a lift off created a large-area array of Cr squares (100 nm x 130 nm) on HSQ and SPEL changed each Cr square into a perfectly round Cr dot with a diameter of 60 nm, reducing the Cr footprint area by 78%. Compared to bare PET, the use of HSQ also reduced the variation in the diameter of the Cr dots from 11.3 nm (standard deviation) to 1.7 nm, an improvement of over 660%. This new technology can be scaled to much larger areas (including roll-to-roll web processing) and thus potentially has applications in various fields.

Publication types

  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Chromium / chemistry*
  • Crystallization / methods*
  • Materials Testing
  • Nanostructures / chemistry*
  • Nanostructures / ultrastructure*
  • Nanotechnology / methods*
  • Polyethylene Terephthalates / chemistry*
  • Surface Properties

Substances

  • Polyethylene Terephthalates
  • Chromium