The CEPH human genome diversity cell line panel (CEPH-HGDP) of 51 globally distributed populations was used to analyze patterns of variability in 20 core human identification STRs. The markers typed comprised the 15 STRs of Identifiler, one of the most widely used forensic STR multiplexes, plus five recently introduced European Standard Set (ESS) STRs: D1S1656, D2S441, D10S1248, D12S391 and D22S1045. From the genotypes obtained for the ESS STRs we identified rare, intermediate or off-ladder alleles that had not been previously reported for these loci. Examples of novel ESS STR alleles found were characterized by sequence analysis. This revealed extensive repeat structure variation in three ESS STRs, with D12S391 showing particularly high variability for tandem runs of AGAT and AGAC repeat units. The global geographic distribution of the CEPH panel samples gave an opportunity to study in detail the extent of substructure shown by the 20 STRs amongst populations and between their parent population groups. An assessment was made of the forensic informativeness of the new ESS STRs compared to the loci they will replace: CSF1PO, D5S818, D7S820, D13S317 and TPOX, with results showing a clear enhancement of discrimination power using multiplexes that genotype the new ESS loci. We also measured the ability of Identifiler and ESS STRs to infer the ancestry of the CEPH-HGDP samples and demonstrate that forensic STRs in large multiplexes have the potential to differentiate the major population groups but only with sufficient reliability when used with other ancestry-informative markers such as single nucleotide polymorphisms. Finally we checked for possible association by linkage between the two ESS multiplex STRs closely positioned on chromosome-12: vWA and D12S391 by examining paired genotypes from the complete CEPH data set.
Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.