Metabolism of genetically modified (GM) lettuce (Lactuca sativa L.) leaves was investigated by comparing NMR metabolic profiles of three lines (T(3)B12, T(7)B7, and T(7)B14) overexpressing the E. coli asparagine synthetase A gene with those of the wild type (WT) at 24, 56, and 64 days after sowing (DAS). Statistical analyses based on hydro-soluble compound profiles significantly and maximally discriminated the WT from GM-lines at optimal harvest time (56 DAS). The T(7)B14 metabolic variations were opposite to those of both T(3)B12/T(7)B7 lines, suggesting that unexpected effects of transgenesis had occurred. Compared to controls, the T(3)B12/T(7)B7 plants shared the leaf mass increase, higher amino acid (asparagine, glutamine, valine, and isoleucine) and protein levels, and lower nitrate contents, accompanied by a modest sink of organic acids (alpha-chetoglutarate, succinate, fumarate, and malate), sucrose, fructose, and inulins. Incongruously, the T(7)B14 butter heads were less leafy than the controls and showed lowered amino acid/protein contents and overstored inulin. To further investigate the metabolic discrepancies among the GM-lines, a set of key nitrogen and inulin genes was monitored. The T(3)B12/T(7)B7 lines shared comparable gene expression changes, including the induction of the endogenous asparagine synthetase1 and nitrate reductase1 that supported the targeted enhancement of nitrogen status. Transgene product malfunctioning and T-DNA rearrangements throughout generations were proposed to explain the decreased asparagine content and the complex expression pattern of N genes in T(7)B14 leaves. In the latter, the inulin accumulation was associated with the upregulation of fructan biosynthesis genes and the intense repression of fructan hydrolases.