Superconducting high-pressure phases of disilane

Proc Natl Acad Sci U S A. 2010 Jun 1;107(22):9969-73. doi: 10.1073/pnas.1005242107. Epub 2010 May 17.

Abstract

High-pressure structures of disilane (Si(2)H(6)) are investigated extensively by means of first-principles density functional theory and a random structure-searching method. Three metallic structures with P-1, Pm-3m, and C2/c symmetries are found, which are more stable than those of XY(3)-type candidates under high pressure. Enthalpy calculations suggest a remarkably wide decomposition (Si and H(2)) pressure range below 135 GPa, above which three metallic structures are stable. Perturbative linear-response calculations for Pm-3m disilane at 275 GPa show a large electron-phonon coupling parameter lambda of 1.397 and the resulting superconducting critical temperature beyond the order of 10(2) K.