Dosimetric analysis of 3D image-guided HDR brachytherapy planning for the treatment of cervical cancer: is point A-based dose prescription still valid in image-guided brachytherapy?

Med Dosim. 2011 Summer;36(2):166-70. doi: 10.1016/j.meddos.2010.02.009. Epub 2010 May 21.

Abstract

The purpose of this study was to analyze the dosimetric outcome of 3D image-guided high-dose-rate (HDR) brachytherapy planning for cervical cancer treatment and compare dose coverage of high-risk clinical target volume (HRCTV) to traditional Point A dose. Thirty-two patients with stage IA2-IIIB cervical cancer were treated using computed tomography/magnetic resonance imaging-based image-guided HDR brachytherapy (IGBT). Brachytherapy dose prescription was 5.0-6.0 Gy per fraction for a total 5 fractions. The HRCTV and organs at risk (OARs) were delineated following the GYN GEC/ESTRO guidelines. Total doses for HRCTV, OARs, Point A, and Point T from external beam radiotherapy and brachytherapy were summated and normalized to a biologically equivalent dose of 2 Gy per fraction (EQD2). The total planned D90 for HRCTV was 80-85 Gy, whereas the dose to 2 mL of bladder, rectum, and sigmoid was limited to 85 Gy, 75 Gy, and 75 Gy, respectively. The mean D90 and its standard deviation for HRCTV was 83.2 ± 4.3 Gy. This is significantly higher (p < 0.0001) than the mean value of the dose to Point A (78.6 ± 4.4 Gy). The dose levels of the OARs were within acceptable limits for most patients. The mean dose to 2 mL of bladder was 78.0 ± 6.2 Gy, whereas the mean dose to rectum and sigmoid were 57.2 ± 4.4 Gy and 66.9 ± 6.1 Gy, respectively. Image-based 3D brachytherapy provides adequate dose coverage to HRCTV, with acceptable dose to OARs in most patients. Dose to Point A was found to be significantly lower than the D90 for HRCTV calculated using the image-based technique. Paradigm shift from 2D point dose dosimetry to IGBT in HDR cervical cancer treatment needs advanced concept of evaluation in dosimetry with clinical outcome data about whether this approach improves local control and/or decreases toxicities.

Publication types

  • Validation Study

MeSH terms

  • Brachytherapy / methods*
  • Female
  • Humans
  • Imaging, Three-Dimensional / methods*
  • Prescriptions
  • Radiometry / methods*
  • Radiotherapy Dosage
  • Radiotherapy Planning, Computer-Assisted / methods*
  • Radiotherapy, Computer-Assisted / methods*
  • Tomography, X-Ray Computed / methods*
  • Treatment Outcome