Apolipoprotein A5 (ApoA5) gene and its protein product play a central role in the complex regulation of circulating triglyceride levels in humans. Naturally occurring variants of the apolipoprotein A5 gene have been associated with increased triglyceride levels and have been found to confer risk for cardiovascular diseases. In our study, four polymorphisms, the T-1131C, IVS3+G476A, T1259C, and C56G alleles of APOA5 were analyzed in a total of 436 patients by polymerase chain reaction-restriction fragment length polymorphism methods. The randomly selected patients were classified into four quartile (q) groups based on triglyceride levels (q1: TG<1.31 mmol/l; q2: 1.31-2.90 mmol/l; q3: 2.91-4.85 mmol/l; q4: TG>4.85 mmol/l). We observed significant stepwise increasing association between the four APOA5 minor allele carrier frequencies and plasma triglyceride quartiles: -1131C (q1: 4.44%; q2: 8.95%; q3: 12.9%; q4: 20.6%), IVS3 + 476A (q1: 4.44%; q2: 5.79%; q3: 11.1%; q4: 19.7%), 1259C (q1: 4.44%; q2: 6.84%; q3: 11.1%; q4: 20.6%) and 56G (q1: 5.64%; q2: 6.31%; q3: 11.16%; q4: 11.9%). The serum total cholesterol and high density lipoprotein-cholesterol levels also showed allele-dependent differences in the quartiles. The findings presented here revealed a special arrangement of APOA5 minor alleles in patients with different serum triglyceride ranges in Hungarians.