Learned fear is a process allowing quick detection of associations between cues in the environment and prediction of imminent threat. Adaptive function in a changing environment, however, requires organisms to quickly update this learning and have the ability to hinder fear responses when predictions are no longer correct. Here we focus on three strategies that can modify conditioned fear, namely extinction, reversal and regulation of fear, and review their underlying neural mechanisms. By directly comparing neuroimaging data from three separate studies that employ each strategy, we highlight overlapping brain structures that comprise a general circuitry in the human brain. This circuitry potentially enables the flexible control of fear, regardless of the particular task demands.
(c) 2010 Elsevier Ltd. All rights reserved.