Effects of growth rate on fat-soluble vitamin and macro- and micromineral concentrations in the circulation of preruminant dairy calves were evaluated. Dietary treatments were designed to achieve 3 targeted rates of gain [no growth (NG)=0.0 kg/d; low growth (LG)=0.55 kg/d; or high growth (HG)=1.2 kg/d] over a 7-wk period. Milk replacer (MR) intakes necessary to achieve these growth rates were estimated using the National Research Council's Nutrient Requirements of Dairy Cattle calf model computer program. All of the calves were fed a 30% crude protein, 20% fat MR reconstituted to 14% dry matter. The diets were formulated to ensure that protein was not a limiting nutrient. No-growth and LG calves were supplemented additionally with vitamins A, D, and E to compensate for treatment differences in dry matter intake relative to the HG calves; however, no attempt was made to adjust mineral intake based on MR consumption. Growth rates for NG (0.11 kg/d), LG (0.58 kg/d), and HG (1.16 kg/d) calves differed during the study. Health was minimally affected by growth rate and this was reflected by comparable and relatively low serum haptoglobin concentrations in all calves during the 7-wk period. Concentrations of serum retinol, 25-(OH)-vitamin D(3), and zinc were unaffected by growth rate. The HG calves had lower RRR-alpha-tocopherol concentrations than NG and LG calves at wk 7, suggesting that the increased growth rate of HG calves was associated with increased utilization of vitamin E. Serum concentrations of all vitamins increased with age. Copper, calcium, and phosphorous concentrations in HG calves exceeded those in LG and NG calves during the latter weeks of the study, likely because of increased MR intake by HG calves. Fat-soluble vitamin and mineral concentrations for all treatment groups remained within ranges considered normal for preruminant calves.
2010 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.