Human enterovirus 71 (EV-71) is a cause of seasonal epidemics of hand, foot and mouth disease, and of less common but severe neurological manifestations. Uncertainty persists regarding the circulation of virus populations in several geographical areas and the timescale of their dissemination. We determined EV-71 sequences at loci 1D (VP1 capsid protein) and 3CD (non-structural proteins) in 86 strains recovered in Austria, France and Germany and performed an evolutionary genetic study of extant virus populations. Phylogenetic analyses positioned 78 of the 86 sequences within two clades among subgenogroups C1 and C2. A minor sequence cluster was assigned to subgenogroup C4. Analyses incorporating the available sequences estimated the substitution rate in genogroup C at 3.66 x 10(-3) and 4.46 x 10(-3) substitutions per site year(-1) for loci 1D and 3CD, respectively, assuming a relaxed molecular-clock model for sequence evolution. Most of the 'European' strains belonged to clades C1b and C2b, which originated in 1994 [95 % confidence interval (CI), 1992.7-1995.8] and 2002 (95 % CI, 2001.6-2003.8), respectively. Estimates of divergence times for locus 3CD were consistent with those measured for locus 1D. Intertwining between clades representing EV-71 subgenogroups and clades corresponding to other enterovirus types (notably early coxsackievirus A prototype strains) in the 3CD phylogeny is highly indicative of ancestral recombination events. Incongruent phylogenetic patterns estimated for loci 1D and 3CD show that a single tree cannot model the epidemic history of circulating EV-71 populations. The evolutionary timescale of genogroup C estimated for both loci was measured only in decades, indicating recent dissemination.