Aim: We sought to determine whether triclosan (2,4,4'-trichloro-2'-hydroxydiphenylether), an extensively used anti-plaque agent with broad-spectrum anti-microbial activity, with reported anti-inflammatory effects via inhibition of prostaglandin E2 and interleukin 1 (IL-1)beta, could also more broadly suppress multiple inflammatory gene pathways responsible for the pathogenesis of gingivitis and periodontitis.
Materials and methods: As an exploratory study, the effects of triclosan on the inflammatory gene expression profile were assessed ex vivo using peripheral whole blood samples from eight periodontally healthy donors. Ten-millilitres whole blood aliquots were incubated 2 h with 0.3 microg/ml Escherichia coli lipopolysaccharide (LPS) with or without 0.5 microg/ml triclosan. Affymetrix microarray gene expression profiles from isolated leucocytes and pathway-specific quantitative polymerase chain reaction arrays were used to investigate changes in expression of target cytokines and cell signalling molecules.
Results: Ex vivo human whole blood assays indicated that triclosan significantly down-regulated the LPS-stimulated expression of Toll-like receptor signalling molecules and other multiple inflammatory molecules including IL-1 and IL-6 and the dampening of signals that activate the T-helper type 1 acquired immune response via suppression of CD70 with concomitant up-regulation of growth factors related to bone morphogenetic protein (BMP)2 and BMP6 synthesis.
Conclusions: Anti-inflammatory effects were found in this exploratory survey, including suppression of microbial-pathogen recognition pathway molecules and the suppression of acute and chronic mediators of inflammation.