Objective: Nifedipine, an L-type calcium channel blocker, protects against the progression of atherosclerosis. We investigated the molecular basis of the antiatherosclerotic effect of nifedipine in macrophages and apolipoprotein E-deficient mice.
Methods and results: In macrophages, nifedipine increased peroxisome proliferator-activated receptor-gamma (PPARgamma) activity without increasing PPARgamma-binding activity. Amlodipine, another L-type calcium channel blocker, and 1,2-bis-(o-aminophenoxy)-ethane-N,N,-N',N'-tetraacetic acid tetraacetoxy-methyl ester (BAPTA-AM), a calcium chelator, decreased PPARgamma activity, suggesting that nifedipine does not activate PPARgamma via calcium channel blocker activity. Inactivation of extracellular signal-regulated kinase 1/2 suppressed PPARgamma2-Ser112 phosphorylation and induced PPARgamma activation. Nifedipine suppressed extracellular signal-regulated kinase 1/2 activation and PPARgamma2-Ser112 phosphorylation, and mutating PPARgamma2-Ser112 to Ala abrogated nifedipine-mediated PPARgamma activation. These results suggested that nifedipine inhibited extracellular signal-regulated kinase 1/2 activity and PPARgamma2-Ser112 phosphorylation, leading to PPARgamma activation. Nifedipine inhibited lipopolysaccharide-induced monocyte chemoattractant protein-1 expression and induced ATP-binding cassette transporter A1 mRNA expression, and these effects were abrogated by small interfering RNA for PPARgamma. Furthermore, in apolipoprotein E-deficient mice, nifedipine treatment decreased atherosclerotic lesion size, phosphorylation of PPARgamma2-Ser112 and extracellular signal-regulated kinase 1/2, and monocyte chemoattractant protein-1 mRNA expression and increased ATP-binding cassette transporter A1 expression in the aorta.
Conclusions: Nifedipine unlike amlodipine inhibits PPARgamma-Ser phosphorylation and activates PPARgamma to suppress monocyte chemoattractant protein-1 expression and induce ATP-binding cassette transporter A1 expression in macrophages. These effects may induce antiatherogenic effects in hypertensive patients.