Neurotoxic effects of TDP-43 overexpression in C. elegans

Hum Mol Genet. 2010 Aug 15;19(16):3206-18. doi: 10.1093/hmg/ddq230. Epub 2010 Jun 8.

Abstract

RNA-binding protein TDP-43 has been associated with multiple neurodegenerative diseases, including amyotrophic lateral sclerosis and frontotemporal lobar dementia. We have engineered pan-neuronal expression of human TDP-43 protein in Caenorhabditis elegans, with the goal of generating a convenient in vivo model of TDP-43 function and neurotoxicity. Transgenic worms with the neuronal expression of human TDP-43 exhibit an 'uncoordinated' phenotype and have abnormal motorneuron synapses. Caenorhabditis elegans contains a single putative ortholog of TDP-43, designated TDP-1, which we show can support alternative splicing of CFTR in a cell-based assay. Neuronal overexpression of TDP-1 also results in an uncoordinated phenotype, while genetic deletion of the tdp-1 gene does not affect movement or alter motorneuron synapses. By using the uncoordinated phenotype as a read-out of TDP-43 overexpression neurotoxicty, we have investigated the contribution of specific TDP-43 domains and subcellular localization to toxicity. Full-length (wild-type) human TDP-43 expressed in C. elegans is localized to the nucleus. Deletion of either RNA recognition domain (RRM1 or RRM2) completely blocks neurotoxicity, as does deletion of the C-terminal region. These deleted TDP-43 variants still accumulate in the nucleus, although their subnuclear distribution is altered. Interestingly, fusion of TDP-1 C-terminal sequences to TDP-43 missing its C-terminal domain restores normal subnuclear localization and toxicity in C. elegans and CFTR splicing in cell-based assays. Overexpression of wild-type, full-length TDP-43 in mammalian cells (differentiated M17 cells) can also result in cell toxicity. Our results demonstrate that in vivo TDP-43 neurotoxicity can result from nuclear activity of overexpressed full-length protein.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Animals, Genetically Modified
  • Blotting, Western
  • Caenorhabditis elegans / genetics
  • Caenorhabditis elegans / metabolism*
  • Caenorhabditis elegans Proteins / genetics
  • Caenorhabditis elegans Proteins / metabolism
  • Cell Line
  • Cell Line, Tumor
  • Cell Nucleus / metabolism
  • DNA-Binding Proteins / genetics
  • DNA-Binding Proteins / metabolism*
  • Green Fluorescent Proteins / genetics
  • Green Fluorescent Proteins / metabolism
  • Humans
  • Microscopy, Confocal
  • Microscopy, Fluorescence
  • Neurons / metabolism*
  • Neurons / pathology
  • Phenotype
  • Sequence Deletion
  • Synapses / metabolism*
  • Synapses / pathology
  • Transfection

Substances

  • Caenorhabditis elegans Proteins
  • DNA-Binding Proteins
  • Green Fluorescent Proteins