We report the load to failure in tensile testing of the MaxFire™ meniscal repair system (Biomet Inc, Warsaw, IN) and compare it to other current meniscal repair devices and mattress suture techniques. After creating a longitudinal tear in 42 one-year-old bovine menisci, 7 specimen groups defined by the meniscal repair device, suture, and/or mattress technique used for meniscal repair were randomly established: (Group 1: Fiberwire™ vertical mattress (VM), Group 2: Fiberwire™ horizontal mattress (HM), Group 3: FasT-Fix™ VM, Group 4: FasT-Fix™ HM, Group 5: RapidLoc™, Group 6: MaxFire™ VM, Group 7: MaxFire™ HM). After completing the repairs, the meniscal specimens were cyclically pre-loaded before load to failure testing was performed. The mean load to failure for each group was: Fiberwire VM (185 ± 41 N), Fiberwire HM (183 ± 36 N), FasT-Fix VM (125 ± 8 N), FasT-Fix HM (107 ± 29 N), RapidLoc (70 ± 12 N), MaxFire VM (145 ± 44 N), MaxFire HM (139 ± 50 N). An analysis of variance demonstrated a significant difference in the mean load to failure (F = 8.31 P < 0.01). Statistically significant differences were seen between both Fiberwire groups verses FasT-Fix HM and Rapid-Loc (P < 0.05). Three modes of failure were observed: suture breakage (17/42, 40.5%), tissue failure (18/42, 42.9%), and knot failure (7/42, 16.7%). 2-0 Fiberwire™ VM and HM repairs had the highest load to failure of all groups tested. The load to failure for the MaxFire™ meniscal repair system is comparable to other available all-inside meniscal repair systems.