Application and validation of Cox regression models in a single-center series of double kidney transplantation

Transplant Proc. 2010 May;42(4):1098-103. doi: 10.1016/j.transproceed.2010.03.037.

Abstract

A useful approach to reduce the number of discarded marginal kidneys and to increase the nephron mass is double kidney transplantation (DKT). In this study, we retrospectively evaluated the potential predictors for patient and graft survival in a single-center series of 59 DKT procedures performed between April 21, 1999, and September 21, 2008. The kidney recipients of mean age 63.27 +/- 5.17 years included 16 women (27%) and 43 men (73%). The donors of mean age 69.54 +/- 7.48 years included 32 women (54%) and 27 men (46%). The mean posttransplant dialysis time was 2.37 +/- 3.61 days. The mean hospitalization was 20.12 +/- 13.65 days. Average serum creatinine (SCr) at discharge was 1.5 +/- 0.59 mg/dL. In view of the limited numbers of recipient deaths (n = 4) and graft losses (n = 8) that occurred in our series, the proportional hazards assumption for each Cox regression model with P < .05 was tested by using correlation coefficients between transformed survival times and scaled Schoenfeld residuals, and checked with smoothed plots of Schoenfeld residuals. For patient survival, the variables that reached statistical significance were donor SCr (P = .007), donor creatinine cleararance (P = .023), and recipient age (P = .047). Each significant model passed the Schoenfeld test. By entering these variables into a multivariate Cox model for patient survival, no further significance was observed. In the univariate Cox models performed for graft survival, statistical significance was noted for donor SCr (P = .027), SCr 3 months post-DKT (P = .043), and SCr 6 months post-DKT (P = .017). All significant univariate models for graft survival passed the Schoenfeld test. A final multivariate model retained SCr at 6 months (beta = 1.746, P = .042) and donor SCr (beta = .767, P = .090). In our analysis, SCr at 6 months seemed to emerge from both univariate and multivariate Cox models as a potential predictor of graft survival among DKT. Multicenter studies with larger recipient populations and more graft losses should be performed to confirm our findings.

MeSH terms

  • Aged
  • Blood Vessels / abnormalities
  • Body Mass Index
  • Body Surface Area
  • Cardiovascular Diseases / complications
  • Diabetes Complications
  • Female
  • Functional Laterality
  • Graft Survival / physiology
  • Humans
  • Kidney Transplantation / methods*
  • Kidney Transplantation / mortality
  • Male
  • Middle Aged
  • Multivariate Analysis
  • Postoperative Period
  • Regression Analysis
  • Renal Dialysis
  • Risk Factors