Adult pancreatic acinar cells give rise to ducts but not endocrine cells in response to growth factor signaling

Development. 2010 Jul;137(14):2289-96. doi: 10.1242/dev.048421. Epub 2010 Jun 9.

Abstract

Studies in both humans and rodents have found that insulin(+) cells appear within or near ducts of the adult pancreas, particularly following damage or disease, suggesting that these insulin(+) cells arise de novo from ductal epithelium. We have found that insulin(+) cells are continuous with duct cells in the epithelium that makes up the hyperplastic ducts of both chronic pancreatitis and pancreatic cancer in humans. Therefore, we tested the hypothesis that both hyperplastic ductal cells and their associated insulin(+) cells arise from the same cell of origin. Using a mouse model that develops insulin(+) cell-containing hyperplastic ducts in response to the growth factor TGFalpha, we performed genetic lineage tracing experiments to determine which cells gave rise to both hyperplastic ductal cells and duct-associated insulin(+) cells. We found that hyperplastic ductal cells arose largely from acinar cells that changed their cell fate, or transdifferentiated, into ductal cells. However, insulin(+) cells adjacent to acinar-derived ductal cells arose from pre-existing insulin(+) cells, suggesting that islet endocrine cells can intercalate into hyperplastic ducts as they develop. We conclude that apparent pancreatic plasticity can result both from the ability of acinar cells to change fate and of endocrine cells to reorganize in association with duct structures.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adult
  • Animals
  • Cell Differentiation
  • Cholangiopancreatography, Endoscopic Retrograde
  • Endocrine Cells
  • Epithelial Cells / metabolism
  • Epithelium / metabolism
  • Humans
  • Insulin / metabolism
  • Intercellular Signaling Peptides and Proteins / metabolism
  • Islets of Langerhans / metabolism*
  • Mice
  • Mice, Transgenic
  • Pancreas / metabolism
  • Pancreas / physiology*
  • Pancreas, Exocrine / metabolism
  • Pancreatic Neoplasms / metabolism
  • Pancreatitis / metabolism
  • Signal Transduction

Substances

  • Insulin
  • Intercellular Signaling Peptides and Proteins