Rationale and objectives: Imaging tumor response to neoadjuvant chemotherapy in vivo offers unique opportunities for patient care and clinical decision-making. Detailed imaging studies may allow oncologists to optimize therapeutic drug type and dose based on individual patient response. Most radiologic methods are used sparingly because of cost; thus, important functional information about tumor response dynamics may be missed. In addition, current clinical standards are based on determining tumor size changes; thus, standard anatomic imaging may be insensitive to early or frequent biochemical responses. Because optical methods provide functional imaging end points, our objective is to develop a low-barrier-to-access bedside approach that can be used for frequent, functional assessment of dynamic tumor physiology in individual patients.
Materials and methods: Diffuse Optical Spectroscopic Imaging (DOSI) is a noninvasive, bedside functional imaging technique that quantifies the concentration and molecular state of tissue hemoglobin, water, and lipid. Pilot clinical studies have shown that DOSI may be a useful tool for quantifying neoadjuvant chemotherapy response, typically by comparing the degree of change in tumor water and deoxy-hemoglobin concentration before and after therapy. Patient responses at 1 week and mid-therapy have been used to predict clinical outcome. In this report, we assess the potential value of frequent DOSI monitoring by performing measurements on 19 different days in a 51-year-old subject with infiltrating ductal carcinoma (initial tumor size 60 x 27 mm) who received neoadjuvant chemotherapy (anthracyclines and bevacizumab) over an 18-week period.
Results: A composite index, the Tissue Optical Index (TOI), showed a significant ( approximately 50%) decrease over the nearly 18 weeks of chemotherapy. Tumor response was sensitive to the type of chemotherapy agent, and functional indices fluctuated in a manner consistent with dynamic tumor physiology. Final pathology revealed 4 mm of residual disease, which was detectible by DOSI at the conclusion of chemotherapy before surgery.
Conclusion: This case study suggests that DOSI may be a bedside-capable tool for frequent longitudinal monitoring of therapeutic functional response to neoadjuvant chemotherapy.
2010 AUR. Published by Elsevier Inc. All rights reserved.