Extracellular calcium depletion transiently elevates oxygen consumption in neurosecretory PC12 cells through activation of mitochondrial Na+/Ca2+ exchange

Biochim Biophys Acta. 2010 Sep;1797(9):1627-37. doi: 10.1016/j.bbabio.2010.06.006. Epub 2010 Jun 13.

Abstract

Fluctuating extracellular Ca2+ regulates many aspects of neuronal (patho)physiology including cell metabolism and respiration. Using fluorescence-based intracellular oxygen sensing technique, we demonstrate that depletion of extracellular Ca2+ from 1.8 to < or = 0.6 mM by chelation with EGTA induces a marked spike in O2 consumption in differentiated PC12 cells. This respiratory response is associated with the reduction in cytosolic and mitochondrial Ca2+, minor depolarization on the mitochondrial membrane, moderate depolarization of plasma membrane, and no changes in NAD(P)H and ATP. The response is linked to the influx of extracellular Na+ and the subsequent activation of mitochondrial Na+/Ca2+ and Na+/H+ exchange. The mitochondrial Na+/Ca2+ exchanger ((m)NCX) activated by Na+ influx reduces Ca2+ and increases Na+ levels in the mitochondrial matrix. The excess of Na+ activates the mitochondrial Na+/H+ exchanger (NHE) increasing the outward pumping of protons, electron transport and O2 consumption. Reduction in extracellular Na+ and inhibition of Na+ influx through the receptor operated calcium channels and plasmalemmal NHE reduce the respiratory response. Inhibition of the (m)NCX, L-type voltage gated Ca2+ channels or the release of Ca2+ from the endoplasmic reticulum also reduces the respiratory spike, indicating that unimpaired intercompartmental Ca2+ exchange is critical for response development.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Calcium / physiology*
  • Carbonyl Cyanide p-Trifluoromethoxyphenylhydrazone / pharmacology
  • Energy Metabolism
  • Extracellular Space / physiology
  • Membrane Potential, Mitochondrial
  • Mitochondria / metabolism*
  • Oxygen Consumption*
  • PC12 Cells
  • Rats
  • Sodium-Calcium Exchanger / physiology*

Substances

  • Sodium-Calcium Exchanger
  • Carbonyl Cyanide p-Trifluoromethoxyphenylhydrazone
  • Calcium