Diagnostic detection of human lung cancer-associated antigen using a gold nanoparticle-based electrochemical immunosensor

Anal Chem. 2010 Jul 15;82(14):5944-50. doi: 10.1021/ac1001959.

Abstract

The development of rapid and sensitive methods for the detection of immunogenic tumor-associated antigen is important not only for understanding their roles in cancer immunology but also for the development of clinical diagnostics. Alpha-enolase (ENO1), a p48 molecule, is widely distributed in a variety of tissues, whereas gamma-enolase (ENO2) and beta-enolase (ENO3) are found exclusively in neuron/neuroendocrine and muscle tissues, respectively. Because ENO1 has been correlated with small cell lung cancer, nonsmall cell lung cancer, and head and neck cancer, it can be used as a potential diagnostic marker for lung cancer. In this study, we developed a simple, yet novel and sensitive, electrochemical sandwich immunosensor for the detection of ENO1; it operates through physisorption of anti-ENO1 monoclonal antibody on polyethylene glycol-modified disposable screen-printed electrode as the detection platform, with polyclonal secondary anti-ENO1-tagged, gold nanoparticle (AuNP) congregates as electrochemical signal probes. The immunorecognition of the sample ENO1 by the congregated AuNP@antibody occurred on the surface of the electrodes; the electrochemical signal from the bound AuNP congregates was obtained after oxidizing them in 0.1 M HCl at 1.2 V for 120 s, followed by the reduction of AuCl(4-) in square wave voltammetry (SWV) mode. The resulting sigmoidally shaped dose-response curves possessed a linear dynamic working range from 10(-8) to 10(-12) g/mL. This AuNP congregate-based assay provides an amplification approach for detecting ENO1 at trace levels, leading to a detection limit as low as 11.9 fg (equivalent to 5 microL of a 2.38 pg/mL solution).

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Antibodies, Monoclonal / chemistry
  • Antibodies, Monoclonal / immunology
  • Antigens, Neoplasm / analysis*
  • Antigens, Neoplasm / immunology
  • Biosensing Techniques / methods
  • Electrochemical Techniques / methods*
  • Electrodes
  • Gold / chemistry*
  • Humans
  • Lung Neoplasms / diagnosis*
  • Metal Nanoparticles / chemistry*
  • Phosphopyruvate Hydratase / analysis
  • Phosphopyruvate Hydratase / immunology
  • Polyethylene Glycols / chemistry

Substances

  • Antibodies, Monoclonal
  • Antigens, Neoplasm
  • Polyethylene Glycols
  • Gold
  • Phosphopyruvate Hydratase