Role of serotonin in central dopamine dysfunction

CNS Neurosci Ther. 2010 Jun;16(3):179-94. doi: 10.1111/j.1755-5949.2010.00135.x.

Abstract

The interaction between serotonin (5-HT) and dopamine (DA)-containing neurons in the brain is a research topic that has raised the interest of many scientists working in the field of neuroscience since the first demonstration of the presence of monoamine-containing neurons in the mid 1960. The bulk of neuroanatomical data available clearly indicate that DA-containing neurons in the brain receive a prominent innervation from serotonin (5-hydroxytryptamine, 5-HT) originating in the raphe nuclei of the brainstem. Compelling electrophysiological and neurochemical data show that 5-HT can exert complex effects on the activity of midbrain DA neurons mediated by its various receptor subtypes. The main control seems to be inhibitory, this effect being more marked in the mesocorticolimbic DA system as compared to the DA nigrostriatal system. In spite of a direct effect of 5-HT by its receptors located on DA cells, 5-HT can modulate their activity indirectly, modifying gamma-aminobutyric (GABA)-ergic and glutamatergic input to the ventral tegmental area (VTA) and substantia nigra pars compacta (SNc). Although 5-HT/DA interaction in the brain has been extensively studied, much work remains to be done to clarify this issue. The recent development of subtype-selective ligands for 5-HT receptors will not only allow a detailed understanding of this interaction but also will lead to the development of new treatment strategies, appropriate for those neuropsychiatric disorders in which an alteration of the 5-HT/DA balance is supposed.

Publication types

  • Review

MeSH terms

  • Animals
  • Brain / metabolism
  • Brain / pathology
  • Central Nervous System Diseases / metabolism*
  • Central Nervous System Diseases / pathology
  • Dopamine / metabolism*
  • Humans
  • Serotonin / metabolism*

Substances

  • Serotonin
  • Dopamine