We study optical properties of optomagnetic metamaterials produced by regular arrays of double gold dots (nanopillars). Using combined data of spectroscopic ellipsometry, transmission and reflection measurements, we identify localized plasmon resonances of a nanopillar pair and measure their dependences on dot sizes. We formulate the necessary condition at which an effective field theory can be applied to describe optical properties of a composite medium and employ interferometry to measure phase shifts for our samples. A negative phase shift for transmitted green light coupled to an antisymmetric magnetic mode of a double-dot array is observed.
(c) 2010 Optical Society of America.