Habitat complexity can mediate key processes that structure local assemblages through effects on factors such as competition, predation and foraging behaviour. While most studies address assemblage responses to habitat complexity within one locality, a more global approach allows conclusions with greater independence from the phylogenetic constraints of the target assemblages, thus allowing greater generality. We tested the effects of natural and manipulated habitat complexities on ant assemblages from South Africa, Australia and Sweden, in order to determine if there were globally consistent responses in how functional measures of foraging success are regulated by habitat complexity. Specifically, we considered how habitat complexity affected ant foraging rates including the speed of discovery and rate of monopolisation. We also tested if habitat complexity affected the body size index, a size-related morphological trait, of ants discovering resources and occupying and monopolising the resources after 180 min. Ants were significantly slower to discover baits in the more complex treatments, consistent with predictions that they would move more slowly through more complex environments. The monopolisation index was also lower in the more complex treatments, suggesting that resources were more difficult to defend. Our index of ant body size showed trends in the predicted direction for complexity treatments. In addition, ants discovering, occupying and monopolising resources were smaller in simple than in complex natural habitats. Responses of discovering ants to resources in natural habitats were clear in only one of three regions. Consistent with our predictions, habitat complexity thus affected functional measures of the foraging success of ants in terms of measures of discovery and monopolisation rates and body size traits of successful ants. However, patterns were not always equally clear in manipulative and mensurative components of the study.