RNA interference (RNAi) is a well-conserved mechanism that uses small noncoding RNAs to silence gene expression posttranscriptionally. Gene regulation by RNAi is now recognized as one of the major regulatory pathways in eukaryotic cells. Although the main components of the RNAi/miRNA pathway have been identified, the molecular mechanisms regulating the activity of the RNAi/miRNA pathway have only begun to emerge within the last couple of years. Recently, high-throughput reporter assays to monitor the activity of the RNAi/miRNA pathway have been developed and used for proof-of-concept pilot screens. Both inhibitors and activators of the RNAi/miRNA pathway have been found. Although still in its infancy, a chemical biology approach using high-throughput chemical screens should open up a new avenue for dissecting the RNAi/miRNA pathway, as well as developing novel RNAi- or miRNA-based therapeutic interventions.