Elderly subjects exhibit declining sleep efficiency parameters with longer time spent awake at night and greater sleep fragmentation. In this article, we report on the changes in cortical interdependence during sleep stages between 15 middle-aged (range: 42-50 years) and 15 elderly (range: 71-86 years) women subjects. Cortical interdependence assessed from EEG signals typically exhibits increasing levels of correlation because human subjects progress from wake to deeper stages of sleep. EEG signals acquired from previously existing polysomnogram datasets were subjected to mutual information analysis to detect changes in information transmission associated with change in sleep stage and to understand how age affects the interdependence values. We observed a significant reduction in the interdependence between central EEG signals of elderly subjects in nonrapid eye movement and rapid eye movement stage sleep in comparison with middle-aged subjects (age group effect: elderly versus middle aged P < 0.001, sleep stage effect: P < 0.001, interaction effect between age group and sleep stage: P = 0.007). A narrowband analysis revealed that the reduction in mutual information was present in delta, theta, and sigma frequencies. These findings suggest that the lowered cortical interdependence in sleep of elderly subjects may indicate independently evolving dynamic neural activities at multiple cortical sites. The loss of synchronization between neural activities during sleep in the elderly may make these women more susceptible to localized disturbances that could lead to frequent arousals.